3.2.60 \(\int \frac {\sec ^3(c+d x)}{(a+a \sec (c+d x))^{5/3}} \, dx\) [160]

Optimal. Leaf size=731 \[ \frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}-\frac {57 \left (1+\sqrt {3}\right ) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 a^2 d (1+\sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )}+\frac {57 \sqrt [3]{2} \sqrt [4]{3} E\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7 a^2 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}+\frac {19\ 3^{3/4} \left (1-\sqrt {3}\right ) F\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7\ 2^{2/3} a^2 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \]

[Out]

3/7*tan(d*x+c)/d/(a+a*sec(d*x+c))^(5/3)-36/7*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(2/3)-57/7*(a+a*sec(d*x+c))^(1/3)
*(1+3^(1/2))*tan(d*x+c)/a^2/d/(1+sec(d*x+c))^(2/3)/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))+57/7*3^(1/4)*((2
^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)-(1+sec
(d*x+c))^(1/3)*(1-3^(1/2)))*(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))*EllipticE((1-(2^(1/3)-(1+sec(d*x+c))^(1
/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(a+a*sec(d*x+c
))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))*((2^(2/3)+2^(1/3)*(1+sec(d*x+c))^(1/3)+(1+sec(d*x+c))^(2/3))/(2^(1/3)-
(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)*2^(1/3)/a^2/d/(1-sec(d*x+c))/(1+sec(d*x+c))^(2/3)/(-(1+s
ec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)+19/14*3^(3
/4)*((2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)
-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))*(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))*EllipticF((1-(2^(1/3)-(1+sec(d*x
+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(a+a*se
c(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))*(1-3^(1/2))*((2^(2/3)+2^(1/3)*(1+sec(d*x+c))^(1/3)+(1+sec(d*x+c
))^(2/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)*2^(1/3)/a^2/d/(1-sec(d*x+c))/(1+sec(d
*x+c))^(2/3)/(-(1+sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^
2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.61, antiderivative size = 731, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3884, 4085, 3913, 3912, 65, 314, 231, 1895} \begin {gather*} \frac {19\ 3^{3/4} \left (1-\sqrt {3}\right ) \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a} F\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7\ 2^{2/3} a^2 d (1-\sec (c+d x)) (\sec (c+d x)+1)^{2/3} \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}+\frac {57 \sqrt [3]{2} \sqrt [4]{3} \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a} E\left (\text {ArcCos}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{7 a^2 d (1-\sec (c+d x)) (\sec (c+d x)+1)^{2/3} \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}-\frac {57 \left (1+\sqrt {3}\right ) \tan (c+d x) \sqrt [3]{a \sec (c+d x)+a}}{7 a^2 d (\sec (c+d x)+1)^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )}-\frac {36 \tan (c+d x)}{7 a d (a \sec (c+d x)+a)^{2/3}}+\frac {3 \tan (c+d x)}{7 d (a \sec (c+d x)+a)^{5/3}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Int[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(5/3),x]

[Out]

(3*Tan[c + d*x])/(7*d*(a + a*Sec[c + d*x])^(5/3)) - (36*Tan[c + d*x])/(7*a*d*(a + a*Sec[c + d*x])^(2/3)) - (57
*(1 + Sqrt[3])*(a + a*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(7*a^2*d*(1 + Sec[c + d*x])^(2/3)*(2^(1/3) - (1 + Sqrt
[3])*(1 + Sec[c + d*x])^(1/3))) + (57*2^(1/3)*3^(1/4)*EllipticE[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d
*x])^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(1/3)*(
2^(1/3) - (1 + Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3
))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(7*a^2*d*(1 - Sec[c + d*x])*(1 + Sec[c
+ d*x])^(2/3)*Sqrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*
(1 + Sec[c + d*x])^(1/3))^2)]) + (19*3^(3/4)*(1 - Sqrt[3])*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[
c + d*x])^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(1
/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])
^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(7*2^(2/3)*a^2*d*(1 - Sec[c + d*x]
)*(1 + Sec[c + d*x])^(2/3)*Sqrt[-(((1 + Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (
1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2)])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rule 3884

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((
a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 4085

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x)}{(a+a \sec (c+d x))^{5/3}} \, dx &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}+\frac {3 \int \frac {\sec (c+d x) \left (-\frac {5 a}{3}+\frac {7}{3} a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{2/3}} \, dx}{7 a^2}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}+\frac {19 \int \sec (c+d x) \sqrt [3]{a+a \sec (c+d x)} \, dx}{7 a^2}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}+\frac {\left (19 \sqrt [3]{a+a \sec (c+d x)}\right ) \int \sec (c+d x) \sqrt [3]{1+\sec (c+d x)} \, dx}{7 a^2 \sqrt [3]{1+\sec (c+d x)}}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}-\frac {\left (19 \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt [6]{1+x}} \, dx,x,\sec (c+d x)\right )}{7 a^2 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}-\frac {\left (114 \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {x^4}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 a^2 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}+\frac {\left (57 \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {2^{2/3} \left (-1+\sqrt {3}\right )-2 x^4}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 a^2 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}+\frac {\left (57\ 2^{2/3} \left (1-\sqrt {3}\right ) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 a^2 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}\\ &=\frac {3 \tan (c+d x)}{7 d (a+a \sec (c+d x))^{5/3}}-\frac {36 \tan (c+d x)}{7 a d (a+a \sec (c+d x))^{2/3}}-\frac {57 \left (1+\sqrt {3}\right ) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 a^2 d (1+\sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )}+\frac {57 \sqrt [3]{2} \sqrt [4]{3} E\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7 a^2 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}+\frac {19\ 3^{3/4} \left (1-\sqrt {3}\right ) F\left (\cos ^{-1}\left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7\ 2^{2/3} a^2 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.29, size = 98, normalized size = 0.13 \begin {gather*} \frac {\left (-33-36 \sec (c+d x)+38\ 2^{5/6} \cos ^2\left (\frac {1}{2} (c+d x)\right ) \, _2F_1\left (\frac {1}{6},\frac {1}{2};\frac {3}{2};\frac {1}{2} (1-\sec (c+d x))\right ) \sec (c+d x) \sqrt [6]{1+\sec (c+d x)}\right ) \tan (c+d x)}{7 d (a (1+\sec (c+d x)))^{5/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(5/3),x]

[Out]

((-33 - 36*Sec[c + d*x] + 38*2^(5/6)*Cos[(c + d*x)/2]^2*Hypergeometric2F1[1/6, 1/2, 3/2, (1 - Sec[c + d*x])/2]
*Sec[c + d*x]*(1 + Sec[c + d*x])^(1/6))*Tan[c + d*x])/(7*d*(a*(1 + Sec[c + d*x]))^(5/3))

________________________________________________________________________________________

Maple [F]
time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\sec ^{3}\left (d x +c \right )}{\left (a +a \sec \left (d x +c \right )\right )^{\frac {5}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^(5/3),x)

[Out]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^(5/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(5/3),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(5/3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(5/3),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)^(1/3)*sec(d*x + c)^3/(a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*sec(d*x+c))**(5/3),x)

[Out]

Integral(sec(c + d*x)**3/(a*(sec(c + d*x) + 1))**(5/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(5/3),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(5/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(5/3)),x)

[Out]

int(1/(cos(c + d*x)^3*(a + a/cos(c + d*x))^(5/3)), x)

________________________________________________________________________________________